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1. Phys.: Condens. Matter 7 (1995) 1391-1404. Printed in the UK 

An analysis of the magnetic ground state in yttrium iron 
garnets 

A Koper, A Lehmann-Szweykowska, R Wojciechowski and M Mucha 
Institute of Physics, A. Mickiewicz University, Pomati, Poland 

Received 4 August 1994. in final form 10 November 1994 

Abstract. We analyse the magnetic phase diagram of ytuium iron garnet (YIG) at T = O K  (in 
the MFA approximation) described by a Heisenberg Hamiltonian. There are five different phases 
and one spin-flop line. Two of these phases are of different semi-spin-glass type. In order to 
adequately describe them we introduce WO new notions: the correlation densily function and 
the informtion emropy ofthe correlation demily functions. The functions and their envopies 
are calculated by means of a Monte Carlo method. We discovered that the ferrimagnetic point 
of the phase diagram corresponding to real YIG falls in the area where three different phases 
converge. One of these phases is of semi-spin-glass type. The results obtained can shed light 
on the interpretation of the low-temperature properties of YIG doped with charge uncompensated 
ions, for example Ca". 

1. Introduction 

In this paper we provide a detailed description of the ground-state phase diagram of a 
magnetic system with the crystalline structure of yttrium iron garnet Y3Fe5OI2 (YIG). The 
diagram was obtained  by means of the so-called relaxation method [1,2]. In the case 
of classical spin Hamiltonians the method gives exact numerical results. In the case of 
quantum systems this method is equivalent to the version of MFA, where for each lattice site 
the molecular field equation is solved separately. 

In our calculation we assumed that the sources of localized magnetic momenta are only 
the trivalent iron ions Fe3+ (3d5) which are in spin-like multiplets 6So with no orbital 
contribution ( L  = 0) and an effective spin equal to 5. The ions occupy two inequivalent 
magnetic sublattices: octahedral ( U )  and tetrahedral (d). The third sublattice, dodecahedral 
(c). is occupied by diamagnetic ions Y3+ (4p6). 

We also assumed that there is a superexchange coupling between Fe3+ ions (through the 
02- (2p6) ions) and that we may restrict interactions to nearest neighbours. The interactions 
are described by the Heisenberg Hamiltonian. 

There are five different phases and one spin-flop line on the obtained diagram. It 
is astonishing that two of these phases are of the semi-spin-glass type. We think that the 
occurrence of these phases is a consequence of the YIG geometry. Equally astonishing is the 
fact that the ferrimagnetic point G of the phase diagram (see figure I@)) corresponding to 
the real Y3Fe5OI2 yttrium~iron garnet lies in the area where three different phases converge. 
One~of these phases happens to be of the semi-spin-glass type. We took the location of the 
point G from [3]. There is no consensus as to the actual location of the point. We shall 
return to this problem in the final section of this paper. 

The location of the point G in the diagram might explain some of the properties of 
the (Y3-,CaL)Fe50l2 YIG doped with valence-uncompensated Ca2+ ions. The doped ions 
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replace Y3+, which leads to a low-temperature decrease of its saturation magnetization, 
photoinduced susceptibility, optoelectrical and photomemory effects [4]. It is worth noting 
that the spin-glass phase was found experimentally [5]  in mixed compounds similar to the 
YIG-like (Fe,Cr,_,)zCa3(Ge04)3. In section 5 we briefly discuss the relation between the 
phase diagram that we obtained with the behaviour of YIG doped with CaZ+. However, 
we think that this problem requires a more detailed analysis [6] (despite the fact that some 
aspects have already been presented [7,8]) within the framework of a previously introduced 
model [9, IO]: an adaptation of the usual periodic Anderson model for the narrow- band 
(3d) and wide-band (2p) electrons with the (p-d) hybridization term. 

The paper is organized as follows. In section 2 we briefly discuss a model of magnetic 
interactions in YIG. We elaborate on the symmetries of the quantum Heisenberg Hamiltonian, 
which play a crucial role in further analyses of the problem. 

In section 3 we describe methods of calculation. The basic method consists in replacing 
the quantum Heisenberg Hamiltonian H with its classical equivalent, i.e. the Hamilton 
function H. It can be shown that local minima of that function may be interpreted as 
metastable variational states of the Hamiltonian H, where the role of the trial state space 
is played by coherent  spin states [Ill. In section 3.1 we discuss the valley structure of the 
function 7-1 and in section 3.2 we discuss the relaxation method, which enables an exact 
determination of the local minima of this function. In section 3.3 we introduce the concept 
of the correlation function density and its informational entropy in the spin-glass phase. 
These newly introduced notions enable us to precisely distinguish different points in the 
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spin-glass phase. 
In section 4 we consider our results. Section 4.1 is devoted to a discussion of the phase 

diagram, and section 4.2 to the density of the correlation function in the semi-spin-glass 
phase. Section 5 contains our conclusions, a summary of our results and their interpretation 
in the context of doped YIG (Y,-,Ca,)FesO12. 

2. A model of magnetic interactions in yttrium iron garnet (YIG) 

As is commonly known, the elementary unit cell of YIG contains 16 iron ions occupying 
16 different (a)  sites, and 24 iron ions occupying 24 different ( d )  sites. The positions of 
these 40 magnetic ions are gathered in [12]. The symmetry of the crystal structure of YIG 
is determined by the 96-element space group, 0;'. Magnetic interactions in YIG can be 
described by the usual translationally invariant two-suhlattice Heisenberg Hamiltonian: 

where $ are the 2 spin operators and in the last term the summation runs over sites of 
different sublattices: J$ J$ JGd denote, in order, the nearest-neighbour intra- and inter- 
sublattice superexchange integrals. The coordination numbers are equal to yo,, = 8, ydd = 4, 
yud = 6. ydu = 4, respectively, where, for instance, yud is the number of nearest neighbours 
of the site a in the sublattice (d). 

The Hamiltonian (1) has several symmetries which play an important part in our 
interpretation of the properties of its ground energy level. The global group of the symmetry 
of the operator (1) is the three-dimensional matrix group O(3) of the spins. This explains 
why all the eigenvalues of the Hamiltonian (1)have a trivial infinite degeneracy of the order 
of the continuum. The group O ( 3 )  is the gauge group of the problem. Consequently, the 
degeneracy of the ground energy level which does not result from the group O(3) will be 
considered non-trivial. 

As well as the space symmetry group Oio, which has been already mentioned, another 
discrete group of transformations is associated with the Hamiltonian (1): 

G = ( e .  r,, r d ,  r1 (2)  

where e is the unit operator, and r is the operator of inversion, i.e. GI = -."; ( i  E a ,  d). 
The operator r, acts only on the spins of the sublattice ( a )  i.e. ra$ = -$ if i E a .  
Analogously, the operator rd changes orientations of spins of the sublattice (d). We shall 
call the group G the inversion group. As will be shown later the group G essentially affects 
the global form of magnetic phase diagrams. 

Let & and & denote all the spins of the sublattices ( a )  and (d ) ,  respectively. It is then 
easy to notice that 

H&, id, J ~ ,  J ~ ,  J " ~ )  = H& r&, J O ,  J ~ ,  -P) = H(z&, jdS .IO, ~ d ,  - ~ " d ) .  (3) 

At the level of the MF approximation the relations (3) become a property of the Hamilton 
function of the system and thus they determine the symmetry of the magnetic phase diagrams 
of Y E  in the space of the superexchange coupling parameters J " ,  J d  and Jud.  In particular, 
if the point p = ( J " .  J d ,  Jod)  corresponds to a femomagnetic phase then, in general, for the 
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point p' = ( J "  , J d ,  - Pd)  a certain ferrimagnetic phase is stable. The energies E,, and E,,, 
of the respective phases are equal to each other. However, it does not mean that magnetic 
excitation energies will be equal, because they depend on sign of J'". 

It can be easily shown that the group of transformations B can be extended to the 
Hamiltonian symmetry group [ E .  ?d, ?], where P = e x 1, 2" = q, x -1, ?d = rd x -1, 
2 = z x 1 and f l  are coefficients accompanying .Pd. That is why we shall use the 
same symbol for the group B and its extension. We should bear in mind that this group is 
essentially different from OLo, i.e. it acts in an entirely different space. 

3. A method for the determination of the ground state 

3.1. Valleys of the Hamilton function and the ground state 

In c:;cr to obtain a phase diagram, a quasi-classical approximation is applied to the 
Hamiltonian (1). All the spin operators W of (1) are substituted by the classical three- 
dimensional vectors ssi where s; are normalized to unity and s = $. 

Within the framework of this approximation the operator turns into a classical 
Hamilton function as follows: 

where sis, is a scalar product of the unit vectors si and sj .  The configuration space 
M of the function H is an N-fold Cartesian product of the two-dimensional spheres S2: 
M = ncx S2. where N is the number of spins in the system. 

It can be easily shown that the replacement of the determination of the quantum ground- 
state problem with its quasi-classical equivalent consists in finding the latter in the set of 
trial functions which are the coherent states [ll]. 

The symmetry of the function (4) like that of the Hamiltonian (1) is determined by the 
three following groups: 0(3),  0;' and 8. 

Having rewritten the vectors si in spherical coordinates, si = (sinOi costpi, 
sinO; sintpi, cosff;), we obtain the following set of stationary equations for the ground 
state: 

- =  0 i 6 a . d .  aw 
atpi a oi - = o  

In order to interpret different solutions of these equations we resort to an analysis based on 
the symmetry. In particular, two solutions S = (si) and S' = (s;) are considered as being 
different from each other if one cannot be transformed into the other under any rotation g 
of the group O(3) .  This natural definition leads us to the conclusion that the whole orbit 

V = {(si') : (si') = (gs i ) ,  g E O(3)j (5) 

should be considered as one solution of the stationary equations. Of course, the Hamiltonian 
function H is constant on the orbits. If any point of the orbit V~corresponds to a local 
minimum of the function 7-1, then the whole set V is called a valley in the state space M .  
This notion is borrowed from the theory of spin glasses [1,2] and has turned out also to be 
useful in the case of the function (4). 
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If the function H has at least two different valleys VI and Vz corresponding to the global 
minimum of energy, then we say that the ground energy level of the-system is non-trivially 
degenerate. If, in addition, these valleys are separated from one another by non-vanishing 
energy barriers, then frustrations are bound to occur in the system [1,2]. 

In this paper, the ground state will be defined as the state of lowest energy in which the 
period of the spin correlations is identical with that of the crystal lattice. This assumption 
enables us to reduce the number of stationary equations to 40 pairs for an elementary cell 
with periodic boundary conditions. The stationary equations are non-linear and complicated. 
Therefore we resort to another method of determining a ground state of the system. We have 
adapted the so-called relaxation method which hereto had mostly been used for disordered 
systems. The relaxation method, was proposed for the first the time in [l] and was later 
discussed in great detail in [Z]. 

3.2. The relaxation method 

Obviously spins tend to take orientations parallel to local molecular magnetic fields. This 
can be neatly expressed by the relaxation procedure, where we have the following equations 
for determining the equilibrium spin configurations: 

s i=Fi(S)  i = 1 ,  ..., N (6) 

where 

C j  J i j s j  

IlCj J c j s j l l  
F;(S )  = s = ( E ] , .  . . , SN) 

and I/ xj  J i j s j l l  denotes the norm. The relaxation procedure for 

s;+1 = F, (S”) (8) 

is repeated as many times as needed to satisfy 

where E denotes the assumed accuracy. In the majority of cases it is sufficient to take 
E = IO-* [2].~The solutions obtained within the framework of this method are only local 
minima (metastable configurations) of the Hamiltonian function X. 

It is easily seen that the equilibrium positions of the spins are fixed points of the set 
of functions (4. . . . , FN) .  Equations (S ) ,  in principle, are not simpler than the stationary 
equations, but the former’s iterations are convergent. 

~~ 

Another important property of (8) is their O(3)  invariance, i.e. 

(10) 

These relations actually mean that the fixed points of (8) form the whole valleys of the 
function 31 and that all the points of a given valley V are equally attainable in the iteration 
process. This homogeneity of all the points of the valleys of the Hamiltonian function 31 
with respect to the iteration of (S), turns out to be very useful in the Monte Carlo numerical 

~. . 
gs i  = F i ( g S )  i = 1, . . . , N g E O(3). 
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calculations of certain integrals which characterize a degree of inhomogeneity of the spin 
correlation functions (see the next section). 

In order to obtain a phase diagam of YIG we apply the relaxation procedure to the 
spins of an elementary unit cell. Consequently, in (6) N is equal to N, + Nd = 40. 
The periodic boundary conditions are imposed on the superexchange couplings J;, J: 
and J f .  To achieve an accuracy of E = IO-* it is usually sufficient to perform several 
tens of reorientations of the spins with the aid of (8). If the spins si have a configuration 
corresponding to the global minimum of the function 'H, then it can easily be tested whether 
they are, for instance, collinear. It is also easy to determine the resultant magnetization M 
of the elementary cell: 

M = M , + M d  (11) 

where MO and Md are the resultant magnetization of the sites (a) and (d) o f  the elementary 
unit cell, respectively, for example M, = xi, si, where the summation runs over all the 
16 (a) sites. 

By studying the magnetization, collinearity of the spins, degeneracy of a ground state 
and so on for different sets of the superexchange parameters J', J d  and Jnd. we can 
determine a phase diagram of  the system at T = 0 K. 

It is worth noting here that the phase space of the system is actually two-dimensional, 
since by a simple rescaling we can get the ratios J ' l / l Jnd[  and Jd/IJYdl with Jyd # 0 
as parameters of the function 'H; Jad = 0 corresponds to two mutually independent spin 
subsystems which appear in the crystal sublattices (a) and (d). 

3.3. 
a t T = O K  

Let us assume now that a state is essentially degenerate if its energy E is a local minimum 
of the Hamilton function 'H. This means that there exist a number of different valleys 
Vi,  Vz, V,, . . . corresponding to the state. One can then pose the question: does a certain 
spin correlation function f take the same values for all these valleys? Of course, the 
question makes sense only for correlation functions that have the same gauge symmetry as 
that of  the Hamilton function 7-1, i.e. for the correlation functions for which f (gS) = f (S )  
for all rotations g of the group O(3). One must realize, however, that the number of valleys 
q, Vz, V,, . . . with the same energy can be quite large, particularly in a frustrated system. 
Then, instead of giving a series of numbers f (Vi),  f (Vz), f (Vj) ,  . . ., it is easier to specify 
how many different valleys can be located in a given range [ x ,  x + A x ] ,  where x = f(S). 
In other words, we define the density p,(x, E )  of the correlation function x = f (S) in the 
space of all the valleys with the same energy E. 

In the case of a global minimum (with energy EO) of the Hamilton function Ft the 
following method can be used to determine the density p,(x, EO). We heat our system to 
a high temperature and then follow how the O(3)-invariant correlation function f changes 
as the temperature drops back to zero. It is clear that the probability of finding at T = 0 K 
a value of the function f in the small range [x ,  x + A x ]  is equal to p,(x, &)Ax. 

The density p,-(x, EO) has two important properties. First, it determines the distribution 
of the function f on the valleys V I ,  Vz, V3, . . .. Second, it determines the frequency at 
which the system falls into different valleys while the temperature decreases. The second 
of these properties strongly depends upon the form that the Hamilton function 7-1 takes in 
the vicinity of the valleys with energy EO; for instance, in the case of a frustrated system 

The concept of information entropy and densiry of the spin correlation functions 
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the frequency at which the system falls into different valleys is strongly dependent upon 
the height and form of barriers separating the valleys from one another. 

The mathematical expression of high temperatures is a random orientation of the spins. 
We choose at random, in the configuration space M of the Hamilton function 7 i ,  a certain 
number of points Si, . . . , S,, where 

s, = ... S,vJ 01 = 1,. .., L .  (12) 

Let these points evenly cover the manifold M .  Simultaneously, within the framework 
of the relaxational procedure, a certain ground state S: = (st,) can be obtained from 
every point S,, at which point the value f: of the function f is found to be equal to 
f: = f ( (s tU)) .  The measure, which has been already mentioned, is defined by the density 
histogram: 

where nl is the number of values f," that fulfill the condition 

XI < f: < X I  + AX (14) 

where Ax is very small. Moreover, it is assumed that XL = ZAx, I = 0, &I,  f 2 ,  . . _. In 
order to provide an even distribution of the points SI. . . . , S, E M we can determine their 
positions by a random number generator. Since our configuration space is an N, +Nd = N- 
fold Cartesian product of the two-dimensional unit spheres, a large number (at least lo4) of 
points I is necessary for the calculation of the density p j .  

A simple but interesting example of the 0(3)-invariant correlation functions is given 
by 

f n m ( S )  = coS-'(S,sm) (15) 

where S = (SI,. . . , s,, . . . , s,, . . .). Another example of a gauge-invariant spin correlation 
is given by a function which is proportional to the magnetic susceptibility of the system: 

For every such function an appropriate density p,+, EO) can be found. If the latter is 
characterized by one sharp peak then, in spite of the non-trivial degeneracy of the ground 
state, the correlation function f will not behave randomly with lowering temperature. 

A measure of randomness for a given function is its information entropy, defined as 
follows: 

H j  = - 1 P,@. Eo) log(Pf(x, Eo)). (17) 

The upper limit of the information entropy Hnm corresponding to the function (15) can 
be estimated by the information entropy of the uniform distribution. The angle between two 
spins takes values in the range (0". 180") where the uniform distribution has a maximum 
value equal to 1/180 and thus H,, < log(l80) Z 5.19295. 



1398 A Koper et a1 

If all mutually independent correlation functions of the system have their information 
entropy Hnm comparable with log(180), then we say that such a system resembles an ideal 
spin glass. In other cases, one can speak only of a semi-spin glass. A semi-spin glass 
behaviour means that only certain parts of the whole system have correlation functions with 
their densities spread out on the domain field. One can also imagine a system consisting 
of parts inside which there is no spin glass, but the inter-subsystem correlation functions 
behave randomly. 

This definition of a spin glass is wider than that based on the concept of frustrations. 
According to our definition, we can also classify as spin glasses such systems whose ground 
energy level displays a non-hivial degeneracy but whose different valleys VI, V,, V3, . . . are 
not necessarily separated from one another by the energy barriers. In such exotic spin 
glasses, in the space of the valleys V,, Vz, V3, . . . there appears an additional symmetry 
which results from the specific geometry of the system and is connected with its space 
group, the range of the superexchange interactions, and so on. As can be easily seen, the 
exotic spin glasses are usually ergodic whereas the spin glasses with frustrations, in general. 
are not. 

4. Results 

4.1. Phase diagrams of the ground states 

For JUd = 0 the system can be considered as one consisting of two mutually independent 
spin subsystems (a) and ( d )  with periodic boundary conditions. Resorting to the relaxation 
method one obtains the following results. For J‘ > 0 ( I d  > 0) the ground state of the 
sublattice (a) (or ( d ) )  is purely ferromagnetic, whereas for J‘ < 0 ( J d  < 0) a purely 
antiferromagnetic ground state is obtained for the (a)  (or (d ) )  sublattice. 

For JUd # 0 the ground state of the system depends upon the sign of the inter-sub- 
lattice superexchange integral, JYd and the ratio of the inter- to intra-sublattice integral, i.e. 
J”/IJndl  and Jd/lJndl. Since the Hamiltonian (4) is invariant under the operators of the 
inversion group G, stable phases of the ground energy level diagrams for Jud c 0 (see 
figure I@)) and JYd > 0 (see figure l(b)) are strongly mutually dependent. 

In both phase diagrams of figure I(Q) and l(b) there appear @-I and AF-I1 phases with 
the resultant magnetic moments Ma and Md of the sublattice (a)  and (d) equal to zero. The 
AF-I phase is not a frustrated semi-spin-glass. Different valleys V I ,  Vz, V,. . . . corresponding 
to its ground energy level are separated from one another by no energy barriers. On the other 
hand, the AF-II phase is a frustrated semi-spin-glass, i.e. the valleys of its ground energy 
level are separated from one another by energy barriers. It seems that the degeneracy of 
the phases AF-I and AF-II results from the special garnet geomehy described by the space 

The AF-I1 phase (the ‘boomerang’ region in figures l(a) and l(b)) is characterized by a 
‘spatial’ distribution of the magnetic moments either in the sublattice ( a )  or (d),  i.e. in at 
least one of these sublattices there exist three linearly independent spins. In the spin-glass 
phase AF-I, each sublattice displays a pure antiferromagnetic ordering but the angle between 
the magnetic moments of the sublattices can take any value in the range 0”-180”. We now 
discuss the differences between the phase diagrams of figures I(Q) and (b). Figure I(Q), 
shows three non-degenerate regions: Ferri-1, Ferri-11 and Femi-lrr. 

In the phase Ferri-r each sublattice is a collinear ferromagnet but the sublattice resultant 
magnetizations are opposite to each other. Since the sublattices have different numbers of 

group 010. 
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spins, the total resultant magnetization is not equal to zero and therefore, the phase Fer& 
can be considered either as a ferrimagnet or an uncompensated antiferromagnet. 

In the Ferri-11 phase, magnetic moments of both sublattices are parallel to a certain 
plane, zd. However, the sublattice (a) is a collinear ferromagnet, whereas the spins of the 
sublattice (d )  form different angles with one another. The resultant magnetization of the 
sublattice (d) is opposite to that of the sublattice (a). Since with increasing J d  the length 
of the vector Md also increases, there occurs in figure l (a)  the broken line on which the 
resultant moments Ma and M d  compensate each other, and the total resultant moment 
M is zero; The line separating the phases AF-11 and Fem-11 from each other, is a line of 
non-continuous changes of the magnetization. 

The phase Ferri-111 is analogous to the phase Ferri-!.I but with the roles of the sublattices 
inverted. Again, magnetic moments of the sublattices (a) and (d) are parallel to a certain 
plane ir,. This time, however, spins of the sublattice (d) are ordered ferromagnetically along 
one direction whereas spins of the sublattice,(a) form different angles with one another. The 
resultant magnetic moment Md is opposite to the resultant magnetization Ma. The number 
of spins in the sublattice (d )  is bigger than that in the sublattice (a)  and, consequently, no 
compensation line appears in this region and there is no spin-flop phase. ~ On the broken 
line, separating the phases Ferr-I and Ferri-11 from each other, the resultant magnetization 
M is a continuous function of the parameters J" and J d .  

In figure 1(b) (Jud  > 0) there appear three regions called Ferro-r, Ferro-Ir and Ferro-tir. 
These phases are non-degenerate and can be obtained from the analogous phases Ferri-1, 
Feni-rI and Ferri-111 under the operations of the inversion group 9, i.e. 

The first of these equations means that both sublattices (a) and (d) are ferromagnetically 
ordered and their effective magnetizations Ma and Md are parallel to each other. 
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The second equation of (18) suggests that magnetic moments of both scblattices are 
parallel to the same plane rd. Magnetic moments of the sublattice (a) are ordered 
ferromagnetically, whereas those of the sublattice ( d )  make different angles to one other. 
The resultant magnetization Md is directed along the magnetization Mu. The third equation 
of (IS) should be understood in the same way. 

In the regions Ferri-I, Ferro-I, AF-I and AF-I1 the magnetization i!d is constant and is 
equal to 8, 40, 0, 0 respectively. I n  the regions Ferri-11 (Ferro-n) and Ferri-111 (Ferro- 
III) the magnetization is constant along the lines parallel to the axes Ja / lJud l l ,  J d / l J U d l  
respectively. The diagrams of the magnetization perpendicularly to the coordination axes 
are given in figure 2. This figure, presenting a transition through the spin-flop phase, is 
particularly noteworthy. The mutual characteristic of all the diagrams of the magnetizations 
is the latter's asymptotic vanishing for large negative values of J d / l J U d l  or J"/I Judl in the 
sublattice whose spins are not parallel to one another. 

All these properties of the magnetic ground state of yttrium iron garnets, and in particular 
the occurrence of spin-glass phases, result from the complex geometry of YIG where two 
sublattices of cations interpenetrate each other, forming a non-equivalent nearest-neighbour 
vicinity around sites of either sublattice. For instance, in the AF-I phase a molecular field 
acting on spins of the sublattice (a), and produced by the spins of the sublattice (d) ,  takes 
the following form: 

and appears to be equal to zero as the antiferromagnetically ordered spins sj compensate 
each another. It is also true about the molecular field coming from the sublattice (d). acting 
on a spin of the sublattice (a). So both sublattices are mutually independent despite Jud 
being non-zero. 

4.2. Densities of the correlation function in the spin-glass p h e s  

In order to obtain more precise characteristics of the spin-glass phases in AF-I and AF-11 
regions let us study the question of the spin correlation functions in more detail. 

The following functions of spin correlations in the sublattice (a) can be defined: 

f& = cos-l(sjsj) fiiN = coS-'(s&) (20) 

where i. j ,  k ,  I E a and the ,index&(") and (NNN) denote nearest (i, j )  and next nearest 
(k, I )  neighbours, respectively. 

The spin correlation functions in the sublattice ( d )  fii and f;iN are defined in the same 
way as given by (20) for the sublattice (a). The inter-sublattice correlation are described 
by the following functions: 

fii = COS-'(SiSj) .fitN = COS-'(S&) (21) 

where i ,kEaand j , l E d .  

scheme given in section 3, for instance 
In the ground state these correlation functions determine the densities according to the 

P,$N(~) = PfG(a, EO) (22) 

where a E (O", 180"). 
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Figure 3. The density spin conelation function pad for different points A, B, C. D from the phase 
diagram for .Iad e 0 (see figure I(a)) for nearest neighbours (NN) and next-nearest neighbours 
(NNN) (a-d). The points A = (-0.1, -2) and B = (-0.9, -0.2) both lie in the M-11 phase. 
The points C = (-0.6. -0.6) and D = (-3, -3) both lie in the AF-I phase. The information 
entropies Hf for these points are reipectively Hi'' = 1.0984, Hi" = 3.9911, Hgd = 5.1438, 
Hi'' = 5.0466. These entropies xe the same for the nearest and ned-nearest neighbours. 

The histograms of these densities for certain values of the parameters J d / ] J u d l  and 
JY/IJ'dl are given in figures 3 and 4. The figure captions give the values of the information 
entropy H$+ . . . , H& and H;iN. The calculations were carried out choosing at random 
the number L of lo4 points assuming the homogeneous distribution in the configuration 
space M of a single elementary cell. The range of permitted angles 01 is divided into 180 
equal parts, so that all the correlation figures present the densities of the range Acf = 1'. 

The diagrams grow smoother with increasing number L. This is typical of the Monte 
Carlo method. 

Figures 3 and 4 show clearly that the phases AH and AF-I1 differ significantly from each 
other with respect to their spin correlations. This is seen in particular from the diagrams of 
the density p$,(01) and p$&). 

In the phase AF-I, the densities pFN(a) and pSN(a)  (or p$$,(01), &&(U)) display well 
localized peaks for a = 0" and 01 = 180°, which correspond to the purely antiferromagnetic 
correlations in the sublattice (a) (or (d) ) .  The inter-sublattice densities pii(01) and p&(m) 
take non-zero values for the whole range of the angles, i.e. from 0" to 180". This clearly 
indicates a spin-glass behaviour of the spins. 
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The behaviour of the spin correlations in the phase Ai-Ii is strange. All the densities p 
take non-zero values only for certain regions or even single values from the range O", 180". 
This enables us to consider AF-II as ,,a semi-spin-glass phase. 

Apart from p" and P"N, the density p,(x, EO) where x E (0, l), of the corelation 
function K given by (16) has also been calculated. In both phases AF-I and AF-it, pe(x,  Eo) 
has the same form with the peak localized at x = 0. This shows clearly that the function K 
in these phases is not random and, moreover, that its behaviour is analogous to that for a 
paramagnet at infinite temperature, or an antiferromagnet at T = 0 K. 

Figure 4. The density spin correlation function .odd and pan for different points A, B, 9 lrom 
the phase diagram for J"d c 0 (see figure la) for nearest neighbours (NN) and next-nearest 
neighbours (NNN) U - d )  and (a-a). The positions of the points A and B (8' = B) are the same as 
on the figure 3. The infomation entropies H, for these points are respectively H i d  = 0.6334, 
HifP"N = 3.9887, = 0. Hi! = 5.1497. 

5. Conclusions 

The dimension of the phase diagram in our model of YIG is reduced to two by choosing 
the ratios J " / J J a d [  and Jd/lJJUdl as parameters. For both cases of J" < 0 and J " ~  > 0 
the magnetic ground-state phase diagram is divided into five different regions from which 
three are of the non-degenerate ferromagnetic (if JUd > 0) or ferrimagnetic (for JYd < 0) 
type, whereas the two remaining ones of the antiferromagnetic type display a non-trivial 
high degeneracy. 
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 this degeneracy is caused by the frustrations. That is why these phases are of semi- 
spin-glass type. The source of frustrations, in turn..is the particular geometry of sub-lattices 
( a )  and (d) which are occupied by magnetic ions Fe3+. 

It seems that the best way of describing them, which can be applied particularly to 
the highly degenerate phases, should be based on the idea of spin-correlation density and 
information entropy. In particular, very interesting results are obtained in the 'boomerang' 
AF-II phase which displays strong inhomogeneity with respect to the spin-correlation density 
according to values of the superexchange parameters (see figures 3 and 4).  

The ferrimagnetic point G of the phase diagram, corresponding to real YsFesOlz ymium 
iron garnet is in the close vicinity of the AF-11, Ferri-11 and Ferri-111 phases (see figure I@)). 
This might be the cause of the high sensitivity of YIG to doping. The location of the point G 
in figure I(a) is obtained from experimentally fitted values of the superexchange integrals 

J d  and J":! [3] in the fourth-order of perturbation calculations of the magnetization. 
However, we should realize that for years there has been no consensus on the location of the 
point G .  This is caused by difficulties arising from (i) the inaccuracy of the estimation of 
exchange integrals in effective field models [13], and (ii) loss .of information of real sources 
of resultant magnetization and degrees of contributions from the sublattices [14, IS]. 

However, if we take the most well known estimations of G point locations, as quoted 
by Strentzwik and Anderson [3] in their table 1. and mark them on the graph in figure I(a) 
we shall find that the majority of the estimations fall in the zone that is entirely contained 
in the Ferri-I phase and delimited by the graph axes passing through the origin and the lines 
separating phases Ferri-n, Ferri-111 and AF-11. For example, the estimations of Wojtowicz [I61 
fall close to the origin, while the ones obtained by Harris [17] are halfway between that of 
Wojtowicz and that of Strentzwik and Anderson. 

The location of the G point can explain the anomalous low-temperature magnetic 
properties of Y E  doped with uncompensated ions Ca2+. In particular, the low-temperature 
decrease of its saturation magnetization [4]. Because of their size the calcium Ca2+ ions 
occupy sites in the sublattice (c), thus the YIG properties cannot be explained as the direct 
result of dilution of ions entering into (a) and/or (d) sublattices. 

We think that the location of the G(x)  point on the diagram (see figure I@)) of the 
doped garnet (Y3,Cax)Fes0lz can be calculated [6] within the framework of a previously 
introduced model [9, IO]-an adaptation of the usual periodic Anderson model for the 
narrow-band (3d) and wide-band (2p) band electrons with the (p-d) hybridization term. 

The location changes mechanism of the point G(x) ,  expressed as a function of x ,  is 
associated with the modification of super-exchange integrals calculated at the fourth-order 
terms of perturbation calculus relative to hybridization term (see also [9, lo]). 

The relaxation method, which has been used throughout the paper, can also be applied 
to a number of different magnetic systems particularly those with complex magnetic unit 
cells, long-distant magnetic interactions, and so on. 

This method was recently applied to a description of the magnetic ground state of the 
fullerene family C,. As it twos out, this state happens to be frustrated. We found the notion 
of correlation density function very useful here too. It enabled Us to trace regularities in 
changes of the ground state with changing number of carbon atoms [Ill.  
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